| 5 4 v + 4 12 a b 0 | × | 8 8 8 | ⋱ ∫ N 1 ∞ {\displaystyle {\begin{vmatrix}5&4&{v+4 \over 12}\\a&b&0\end{vmatrix}}\times {\begin{vmatrix}8\\8\\8\end{vmatrix}}\ddots \int _{\mathbb {N} }^{1}\infty }
| 2 4 8 k | {\displaystyle {\begin{vmatrix}2&4\\8\\&k\end{vmatrix}}}
[ 2 4 8 [ a b c d ] ] {\displaystyle {\begin{bmatrix}2&4\\8&{\begin{bmatrix}a&b\\c&d\end{bmatrix}}\end{bmatrix}}}
If the coefficient of y q ^ is equivalent to the ratio of ∑ x = − ∞ ∞ k lim y → 0 q ^ × x , we find that: q ^ ≈ k y {\displaystyle {\begin{matrix}{\mbox{If the coefficient of }}{y \over {\hat {q}}}\\{\mbox{ is equivalent to the ratio of }}\\\sum _{x=-\infty }^{\infty }{k \over \lim _{y\to 0}{{\hat {q}}\times x}},\\{\mbox{we find that: }}\\{\hat {q}}\approx {k \over y}\end{matrix}}}
∑ x = − ∞ ∞ k lim y → 0 q ^ × x {\displaystyle \sum _{x=-\infty }^{\infty }{k \over {\lim _{y\to 0}}{{\hat {q}}\times x}}}
lim y → 0 q ^ × x {\displaystyle \lim _{y\to 0}{{\hat {q}}\times x}}
same basic code for these symbols, but when they are inside other elements, super- and subscripts don't align properly!