Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

graph in the complex plane showing a looping curve passing several times through the origin
graph in the complex plane showing a looping curve passing several times through the origin
This is a graph of a portion of the complex-valued Riemann zeta function along the critical line (the set of complex numbers having real part equal to 1/2). More specifically, it is a graph of Im ζ(1/2 + it) versus Re ζ(1/2 + it) (the imaginary part vs. the real part) for values of the real variable t running from 0 to 34 (the curve starts at its leftmost point, with real part approximately −1.46 and imaginary part 0). The first five zeros along the critical line are visible in this graph as the five times the curve passes through the origin (which occur at t  14.13, 21.02, 25.01, 30.42, and 32.93 — for a different perspective, see a graph of the real and imaginary parts of this function plotted separately over a wider range of values). In 1914, G. H. Hardy proved that ζ(1/2 + it) has infinitely many zeros. According to the Riemann hypothesis, zeros of this form constitute the only non-trivial zeros of the full zeta function, ζ(s), where s varies over all complex numbers. Riemann's zeta function grew out of Leonhard Euler's study of real-valued infinite series in the early 18th century. In a famous 1859 paper called "On the Number of Primes Less Than a Given Magnitude", Bernhard Riemann extended Euler's results to the complex plane and established a relation between the zeros of his zeta function and the distribution of prime numbers. The paper also contained the previously mentioned Riemann hypothesis, which is considered by many mathematicians to be the most important unsolved problem in pure mathematics. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


Problem II.8 in the Arithmetica by Diophantus, annotated with Fermat's comment, which became Fermat's Last Theorem
Image credit:

Fermat's Last Theorem is one of the most famous theorems in the history of mathematics. It states that:

has no solutions in non-zero integers , , and when is an integer greater than 2.

Despite how closely the problem is related to the Pythagorean theorem, which has infinite solutions and hundreds of proofs, Fermat's subtle variation is much more difficult to prove. Still, the problem itself is easily understood even by schoolchildren, making it all the more frustrating and generating perhaps more incorrect proofs than any other problem in the history of mathematics.

The 17th-century mathematician Pierre de Fermat wrote in 1637 in his copy of Bachet's translation of the famous Arithmetica of Diophantus: "I have a truly marvelous proof of this proposition which this margin is too narrow to contain." However, no correct proof was found for 357 years, until it was finally proven using very deep methods by Andrew Wiles in 1995 (after a failed attempt a year before). (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals